

Food Analysis Workshop: Proficiency Testing and Reference Materials Development

Proficiency Testing in Australia and the NMI PT Program

Paul Armishaw

measurement.gov.au

Australian PT Providers

- Accreditation to ISO17043
 - offered by National Association of Testing Authorities NATA
 - 11 accredited providers
- Medical
- Mining
- Food
 - · chemical testing
 - microbiology
- Australian laboratories also participate in international PT
 - import restrictions can make this difficult

Food Analysis Workshop: Proficiency Testing and Reference Materials Development

NMI PT and Laboratory Performance

- Not blind
 - laboratories know it is a PT sample
- Limited range of target analytes
 - list provided to participants
- Blank sample provided
- · Long turn around time
 - four weeks
- So what we see is the laboratory's best attempt
- Rut
 - PT is just a snapshot
 - anyone can make a mistake
- · The purpose is quality improvement

Food Analysis Workshop: Proficiency Testing and Reference Materials Development

Types of errors

- Two-thirds of errors are technical
 - extraction method
 - instrumental technique
 - dilution factors
 - interference correction
 - calibration
 - etc
- One-third are blunders
 - wrong units
 - transcription error
 - calculation error
 - sample mix-up
- NMI will not accept changes to results after the issue of the interim report.

measurement.gov.au

24 Years of Pesticide in Fruit and Vegetable PT

- 11 labs sent results 10 Australian
- · Most used Luke method
- liquid/liquid acetone, dichloromethane, hexane
- GC with ECD, FPD and NPD

- 22 labs, 10 Australian
- 1 survivor from 1994
- QuEChERS
- LC/MS/MS, GC/MS GC/ECD and FPD

ossible	analytes 2019		
	,		
	2,4-D	Diazinon	Methidathion
	Abamectin	Dicofol	Methomyl
	alpha-Endosulfan	Dieldrin	Methomyl oxime
	Azinphos-methyl	Dimethoate	Mevinphos
	Azoxystrobin	Dithiocarbamates	Monocrotophos
	beta-Endosulfan	Endosulfan Sulfate	Omethoate
	Bifenazate	Fenamiphos	Parathion
	Bifenthrin	Fenitrothion	Parathion Methyl
	Buprofezin	Fenthion	Penconazole
	Captan	Fenthion sulfone	Permethrin
	Carbaryl	Fenthion sulfoxide	Pirimicarb
	Carbendazim	Fenvalerate	pp-DDT
	Chlorfenvinphos	Imazalil	Procymidone
	Chlorothalonil	Imidacloprid	Profenofos
	Chlorpyrifos	Indoxacarb	Propargite
	Clothianidin	Iprodione	Pyraclostrobin
	Cyfluthrin	Linuron	Spinosad
	Cyhalothrin	Maldison	Thiabendazole
	Cypermethrin	Metalaxyl	Triadimefon
	Deltamethrin	Methamidophos	
	·	<u> </u>	

19th - 21st June 2019, Bangkok, THAILAND

Food Analysis Workshop: Proficiency Testing and Reference Materials Development

Using PT data to Estimate MU

- · A single round of PT is a snapshot of a laboratory's performance
- · Ongoing participation build a record of performance
 - including the MU estimates
- Data from PT can be used for MU estimation

measurement.gov.au

Interlaboratory Studies

- Validation trial
 - all laboratories use the same method
 - the method is being evaluated
 - reproducibility standard deviation is an estimate of standard uncertainty
 - Eurachem has an example of fibre in feed
- Proficiency test
 - laboratories use their own methods
 - the laboratories are being evaluated
 - between-laboratory standard deviation is an estimate of standard uncertainty
 - Nordtest Guide has an example of MU estimation

Food Analysis Workshop: Proficiency Testing and Reference Materials Development

PT Histor	y of Laborator	γX	Ni	in	water
-----------	----------------	----	----	----	-------

		-			
PT Study No.	Sample	Laboratory X result µg/L	PT Assigned value µg/L	Robust CV of all results (%)	Number of Results
AQA 08-02	Fresh	53 ± 8	52.0 ± 3.1	9.9	18
AQA 08-10	Fresh	19.5 ± 2.5	18.9 ± 0.6	7.8	26
	Fresh	200 ± 30	191 ± 5	5.5	26
AQA 09-05	Saline	49	44.7 ± 3.3	10.8	18
AQA 09-18	Fresh	5.4 ± 1.5	5.04 ± 0.27	7.4	14
	Fresh	49 ± 7	48.9 ± 1.2	3.3	16
A O A 40 00	Potable	50 ± 7	50 ± 1	5.9	20
AQA 10-06	Potable	50 ± 7	50 ± 1	3	20
1011017	Saline	5.2 ± 1.6	4.93 ± 0.25	12	14
AQA 10-17	Saline	5.3 ± 1.6	4.93 ± 0.25	8.9	13
			Average	7.5	

measurement.gov.au

MU from Lab. X's PT Data

- The average robust between laboratory CV was 7.5 %
 - this is an estimate of the relative standard uncertainty
 - could also use a pooled relative standard deviation (7.7% in this case)
- A coverage factor of 2 give an estimated relative expanded uncertainty of 15%
 - at a confidence level of approximately 95%

Food Analysis Workshop: Proficiency Testing and Reference Materials Development

MU in the Unit of Measurement (μg/L)

Result μg/L	Uncertainty μg/L
5.0	0.8
20	3
50	8
200	30

The estimate of MU from the PT data is quite similar to the estimates reported by Lab. X in the PT. E.g. Lab. X reported: 200 ± 30 , 53 ± 8 , 5.2 ± 1.6

measurement.gov.au

MU from PT: Limitations

- · Aggregated data
 - different method, different laboratories
- · Applied to a particular measurement in a single laboratory
 - All measurements get the same estimate of MU
 - the estimate that would apply to a hypothetical 'typical' sample
 - measured in a hypothetical 'typical' laboratory
- PT sample may not cover all aspects of the measurement process
 - e.g. extraction, sub-sampling
- · Consensus assigned value may be biased
- Three years of PT participation is a long time to wait before making an MU estimate.

Food Analysis Workshop: Proficiency Testing and Reference Materials Development

Acknowledgments

- The APFAN organisers
- NMI
 - funding
 - colleagues in the PT team
 - Raluca lavetz, Luminita Antin, Geoff Morschel
- · Participating Laboratories

measurement.gov.au

National Measurement Institute 105 Delhi Road North Ryde NSW Australia

Phone: + 61 2 9449 0111

Email: proficiency@measurement.gov.au